
Open-Source Prototyping of

5G-and-Beyond Wireless

Systems

DESIGN DOCUMENT

Team Number: 15

Client: Professor Zhang

Advisers: Professor Zhang

Team Members: Anh To, Bradley Norman, Elias Zougmore, Haan Zilmer

Roles: Lead Algorithm Designer, Meeting Facilitator, Lead Testing Engineer,

Report Manager

Sddec21-15@iastate.edu http://sddec21-

15.sd.ece.iastate.edu

Revised: Final Version

Executive Summary

http://sddec21-15.sd.ece.iastate.edu/
http://sddec21-15.sd.ece.iastate.edu/
http://sddec21-15.sd.ece.iastate.edu/
http://sddec21-15.sd.ece.iastate.edu/
http://sddec21-15.sd.ece.iastate.edu/
http://sddec21-15.sd.ece.iastate.edu/
http://sddec21-15.sd.ece.iastate.edu/
http://sddec21-15.sd.ece.iastate.edu/
http://sddec21-15.sd.ece.iastate.edu/
http://sddec21-15.sd.ece.iastate.edu/
http://sddec21-15.sd.ece.iastate.edu/

Development Standards & Practices Used
• IEEE and SESC software development standards

• We will constantly communicate for trouble shootings/clarifications

• Show up on time for group meetings and advisor meetings

• We strive to be open about using the open-source platform srsRAN

• Continuous Integration/ Continuous Development

Summary of Requirements
We need to research concepts of 5G and wireless networks. Specifically, how the

srsLTE platform implements their 5G network. Research and implement

scheduling algorithms in srsLTE and test its performance in an on-campus testbed.

Our advisors gave us four resource documents with different scheduling

algorithms that we needed to understand to pick the one that we wanted to

implement. We have decided to implement the USC algorithm.

During break, srsLTE code base was heavily modified and renamed srsRAN. Our

team decided to take some time to relearn the code base and do more research on

c++ since that is the language used for the code base.

The main goal is for us to learn more about 5G scheduling and the software needed

to implement it as well as see if implementing the algorithm would improve the

scheduling performance of srsRAN.

Applicable Courses from Iowa State University Curriculum

• SE 329

• CPRE/EE 185

New Skills/Knowledge acquired that was not taught in courses

• 5g infrastructure

• Scheduling algorithms

• srsRAN

Table of Contents

1 Introduction .. 4

1.1 Acknowledgement ... 4

1.2 Problem and Project Statement ... 4

1.3 Operational Environment ... 5

1.4 Requirements.. 5

1.5 Intended Users and Uses ... 5

1.6 Assumptions and Limitations .. 6

1.7 Expected End Product and Deliverables ... 6

2 Project Plan .. 6

2.1 Task Decomposition ... 6

2.2 Risks And Risk Management/Mitigation .. 7

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria ... 7

2.4 Project Timeline/Schedule .. 8

2.5 Project Tracking Procedures ... 8

2.6 Personnel Effort Requirements ... 9

2.7 Other Resource Requirements .. 9

2.8 Financial Requirements ... 9

3 Design ... 9

3.1 Previous Work and Literature .. 9

3.2 Design Thinking... 10

3.3 Proposed Design ... 11

3.4 Technology Considerations .. 12

3.5 Development Process .. 12

3.6 Design Plan .. 12

4 Testing ... 13

4.1 Interface Testing .. 13

4.2 Acceptance Testing ... 13

4.3 Results ... 13

5 Implementation .. 15

6 Closing Material ... 16

6.1 Conclusion .. 16

6.2 References ... 16

6.3 Appendices.. 17

List of figures/tables/symbols/definitions

Figure 1: spring semester Ghant chart

Figure 2: Fall semester Ghant chart

Figure 3. UCS architecture

Figure. 4. UCS implementation in MAC layer

Figure 5: UDP iperf simulation results

1 Introduction

1.1 ACKNOWLEDGEMENT

We would like to acknowledge Professor Zhang for the research resources he has

provided us with as well as the advice he provided us with for the project.

1.2 PROBLEM AND PROJECT STATEMENT

Problem statement: Advancements in 5G technology have led to an increase in

demand for qualified engineers with the ability to develop and prototype advanced

wireless solutions. 5G wireless networks are expected to enable not only Gbps

mobile connectivity but also machine-type communications for smart agriculture,

connected and automated vehicles, smart grid, Industry 4.0, and AR/VR. 5G

wireless is projected to reach a market size of $250 billion by 2025, and it has been

attracting significant investment from industry and government worldwide. Our

project is in a research capacity, so while we will not be solving any specific

problem, we will be looking into ways to improve the scheduling algorithm for 5G

Systems.

Solution approach: Through this project, team members will get hands on

experience with the development and implementation of advanced wireless 5G

algorithms. As a part of the project, members will get to use platform technologies

such as srsRAN, USRP software defined radios, and small-scale wireless testbeds.

Our main work will be done in adjusting and rewriting the Scheduler algorithm in

order to improve its functionality.

Project outputs: Experience with platform technologies and testbeds. Knowledge of

advanced wireless 5G algorithms, and implementation of these algorithms through

at scale wireless testbeds.

1.3 OPERATIONAL ENVIRONMENT

Our project will operate in a software environment. We will have an open-source

software platform (srsRAN) and a testbed containing two software defined radios

and two NUC’s with srsRAN installed.

1.4 REQUIREMENTS

Functionality

• Ensures schedule efficiency and must utilize an efficient time allocation

process.

• RAN and Mobile core unity ensures communication between base stations

and the mobile core.

User Interface: Users of our product must be able to access and use the modified

algorithm for academic purposes. For example, future students should be able

to understand our code through clear and concise comments. Non-functional

requirements

• Research done on 5G wireless Systems.

• Research done into srsRAN base code.

• Full Documentation on srsRAN code base

1.5 INTENDED USERS AND USES

The product will be used for research purposes and other areas of academia.

Therefore, the users will be primarily researchers, educators, and students.

1.6 ASSUMPTIONS AND LIMITATIONS

• Assumptions:

o Our research will be used by other researchers in the 5G systems

field.

o Our test environment will apply to real life situations.

• Limitations:

o Time

o Lack of information on the code base we are using

o Lack of knowledge in the field of advanced wireless algorithms and

technologies.

o Number of people

1.7 EXPECTED END PRODUCT AND DELIVERABLES

Deliverables: Wireless testbed setup, testbed implementation of an advanced 5G
wireless algorithm.

• The team will be implementing a wireless algorithm on a small-scale wireless
testbed to gain understanding of algorithm testing using wireless testbeds.

2 Project Plan

2.1 TASK DECOMPOSITION

• Complete Research

o Cover given reference materials on 5G

• Tools Setup

o Set up GitLab

 CI/CD setup o

Website setup

▪ Testbed

setup

• Implement/refine algorithm using srsRAN

o Begin with simple implementation of wireless algorithm.

o Begin implementation of advanced wireless algorithms.

o Analyze testbed results.

o Refine the algorithm.

o Retest

• Refine algorithm
2.2 RISKS AND RISK MANAGEMENT/MITIGATION

The nature of the project is purely software based as we are going to be developing

a scheduling algorithm. Therefore, our primary risk is code that does not work

100% of the time for all usage. Some of the errors that can cause code to not

function as expected are anomalies of the algorithm or user input.

The probability of our code not fitting all scenarios is 1.00 as it is almost impossible

for our algorithm to cover everything that 5g can be provided. An obvious

mitigation of this is to include as much code testing as possible.

Cybersecurity is another factor involved in many software-based projects, however,

since all code we will be using, and writing is open source and for academic

purposes we will be sharing information freely with the public and have no need to

be concerned with cybersecurity.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Milestones:

1. Complete research

2. Finish tools setup

3. Implement simple code on platform

4. Prototype of algorithm

5. Finished algorithm

Progress metric will be time spent on the given task.

2.4 PROJECT TIMELINE/SCHEDULE

Figure 1: spring semester Ghant chart

Figure 2: Fall semester Ghant chart

2.5 PROJECT TRACKING PROCEDURES

GitHub, MS Team, Gantt Chart

2.6 PERSONNEL EFFORT REQUIREMENTS

Members Anh To Brad Norman Haan Zilmer Elias Zougmore

Time
(Coding/Testing)
Hours/Week

6hr 6hr 6hr 6hr

2.7 OTHER RESOURCE REQUIREMENTS

• Internet access

• Personal computers

• srsRAN

• Reference Materials

• wireless testbed

• UCS scheduling

• Physical SDRs

2.8 FINANCIAL REQUIREMENTS

We have no hardware involved in our project that the university does not already

own. The only hardware needed will be provided by our professor and is already a

part of his research.

3 Design

3.1 PREVIOUS WORK AND LITERATURE

There are similar products everywhere in 5G wireless systems as each system needs

a scheduler in order to function. For example, IEEE put out an article about a

scheduler used with time reversal theory and downlink user selection algorithm.

We will also be following a paper on scheduling written in part by our professor for

base theory for our scheduler. Our project will differ from each individual theory

proposed in the literature by combining ideas from each source.

3.2 DESIGN THINKING

Throughout this project, team members will get hands-on experience with the

implementation of advanced 5G algorithms. We decided to work on srsRAN

source code through an on-campus testbed. This decision came up with

implementing the static part first. We also thought about working on the mobile

aspect of the transmission, but it will bring more interference between base

stations. Working in the static part, we spent most of the time working on the

algorithm implementation and working srsRAN. We proposed implementing the

UCS algorithm. A Unified Cellular Scheduling (UCS) is a framework based on the

Physical-Ratio-K (PRK) interference model that schedules uplink, downlink, and

Device to Device (D2D) transmissions to ensure predictable communication. To

ensure that a maximal set of non-interfering links are scheduled to transmit at

each carrier and each time slot. To be more specific, the unified scheduler is based

on the ONAMA TDMA scheduling algorithm which is adapted to traffic demand.

Since The ONAMA algorithm is designed for single carrier wireless networks, it

has been extended to consider the specific cellular network such as multiple

carriers, base stations, user equipment’s and traffic demands. We have planned out

what we will do throughout the semester, and we have a Gantt chart that helps us

follow up on what to do or when they are due.

3.3 PROPOSED DESIGN

Figure 3. UCS architecture

Figure 4. UCS implementation in MAC layer

In order to approach this problem, we are thinking about working on the static

part first. We tried implementing the source code for the srsRAN mac so we can

know what to modify or not. We mostly worked don the Unified scheduler

algorithm which is in C++ language. The source code only works with Linux, so we

are using a virtual machine to run the code.

The PRK model unifies the scheduling of uplinks, downlinks and D2D links in

cellular networks and provides a unified framework about interferences related to

wireless network scheduling. With the unified control signaling, the node

estimates the channel gain and uses signal map to record the estimated results. To

have a reliable estimate, the user equipment is used to the minimum so it can

share information (signal map, estimates) with its respective base stations. Then

the base station collects the data needed to estimate the PRK model parameters.

One K is maintained for each channel so a node can transmit the average channel

gain between itself and neighbors. K should be properly selected to guarantee

accuracy of interference control and avoid control signaling overhead. The PRK

model decides which link can or cannot transmit concurrently so the task of mode

selection for UE to UE is decided whether the two shall communicate with each

other directly or through base stations.

3.4 TECHNOLOGY CONSIDERATIONS

We will be using two software defined radios, and two NUC compute nodes with

srsRAN as our testbed for this project. The alternative would be utilizing an at

scale testbed located in Salt Lake City called POWDER. See appendix 1, USRP

hardware driver and srsRAN installation guide.

3.5 DEVELOPMENT PROCESS

We used an Agile development process. For our project we will need to have the

ability to adapt our planning and code to the results of our tests. The waterfall

method would not work for us as it does not allow us to adjust our algorithm to

meet the test requirements, and the TDD method does not apply as our testing

outcomes will be an analysis of the system functionality.

3.6 DESIGN PLAN

Our design will be different than most projects, as our project is solely research based.
Therefore, our design will be focused on learning how our algorithm will function
when compared to other algorithms. With that in mind the design plan for our
scheduler algorithm will be testing and researching how the theory of uplink, downlink
and Device to Device work in a unified manner to utilize the available wireless
communication carriers.

4 Testing
The algorithm will be tested using two software defined radios with two compute

nodes with srsRAN software suite installed. The default scheduling algorithms for

srsRAN are proportional fair and round robin. In order to test our algorithm, the

default scheduling algorithm will be altered, and a comparison between the two

algorithms will be required. In order to achieve this, inter-channel interference

will need to be simulated within the code base by deliberately inserting packet

loss. The team determined that an iperf simulation would measure the required

network parameters to verify performance.

4.1 INTERFACE TESTING

Interfacing with srsRAN is done through Linux's command lines in both the user

equipment and base station equipment shells accessed through the NUC computer

node. In order to test the functionality of our algorithm we will require an

interface between at least one base station and one or more static or mobile user

equipment, this will be done with software defined radios located in the testbed.

In order to test the scheduling algorithm, the packet loss between the user

equipment and the base station will be measured by measuring the packets which

are transmitted from the IP address of the base station srs interface and comparing

with the packets received at the IP address of the user equipment srs interface.

4.2 ACCEPTANCE TESTING

The algorithm’s functional requirement is that it performs the frequency division

multiplexing for the User Equipment's within the experiment's domain. A failure

of the algorithm will result in interference between communication channels, and

packet loss greater than that of the default scheduling algorithm. The inability for

the base station to interface with the User Equipment, slow data rates, mis

allocation of resources between User Equipment and base station under test are

also indications of failure.

4.3 RESULTS

The results depicted in figure 5 are that of a UDP iperf simulation for the default

srsRAN scheduling algorithm. The connection is made between the base station

and user equipment software defined as radios. Bandwidth and lost datagrams are

measured at the srs interfaces of the SDR’s.

Figure 5: UDP iperf simulation results

5 Implementation
For this semester, we used the implemented code of srsRAN (the well commented

code) to continue implementation of the unified scheduler algorithm. We needed

to understand the code better to some extent that it makes changing the code

easier. The objective of the unified scheduler is to schedule data transmission so

that most set of non-interfering links are scheduled to transmit carrier and time

slot. The Physical-Ratio-k interference model, used for developing field deployable

scheduling, is extended here for multiple channel settings while the UCS places

the scheduling decisions at each base station and having the user equipment share

state information with the right base station. The PRK model defines for each link

in the set of links provided, an exclusion region around the receiver so the signal

can travel from each base station or user equipment’s to the receiver as node with

addresses. The algorithm was a little bit of a challenge because the actual code had

no comments lines and asking for help was not much of the help since the code is

an open source and the code kept changing much of the time. We did write the

code with our example of nodes as links for transmission, but we were not able to

test it with the actual code. What we were thinking was that someone can pick up

where we left off and continue since we have the algorithm and the code, well

documented.

6 Closing Material

6.1 CONCLUSION

Our main goal is adjusting and rewriting the Scheduler algorithm in order to

improve its functionality. In order to do this, we implemented the source code of

srsLTE and are now working on the testing part of the code implemented. We are

using Powder and testbed for the testing. We tried connecting the user equipment

to the base station to test the connectivity between them. From there, we will have

the adjustment of the source code left to be done, we need to make it, so it meets

our requirements.

We have not met our final goal as there were problems that we could not foresee

such as the code base changing over break. Another problem that we have seen

coming is that we do not have experience of working with srsLTE/srsRAN. Despite

these problems, we have been able to do the initial set ups for srsRAN, a prototype

of the proposed scheduling algorithm, and multiple write ups for srsRAN.

6.2 REFERENCES

Z. Wu, B. Wang, C. Jiang and K. J. R. Liu, "Downlink MAC Scheduler for 5G Communications with

Spatial Focusing Effects," in IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp.

3968-3980, June 2017, doi: 10.1109/TWC.2017.2690432.

Yuwei Xie, Hongwei Zhang, Pengfei Ren, “Unified Scheduling for Predictable

Communication Reliability in Cellular Networks with D2D

 Links,” https://www.ece.iastate.edu/~hongwei/group/publications/UCS.pdf

6.3 APPENDICES

1. USRP Hardware Driver (UHD) and srsRAN Installation Guide

Environment Setup

Run the following in the virtual machine and UE computer to Disable Frequency

Scaling before you install UHD and srsRAN.

sudo apt-get install cpufrequtils sudo gedit

/etc/init.d/cpufrequtils

change:GOVERNOR="performance" sudo systemctl

disable ondemand sudo

/etc/init.d/cpufrequtils restart

UHD Installation

Reference:

https://kb.ettus.com/Building_and_Installing_the_USRP_OpenSource_Toolchain_

(UHD_and_GNU_Radio)_on_Linux

On Ubuntu 18.04 system sudo apt-get update

sudo apt-get -y install git swig cmake doxygen build-essential libboost-all-dev

libtool libusb-1.0-0 libusb-1.0-0-dev libudev-dev libncurses5-dev libfftw3-bin

libfftw3-dev libfftw3-doc libcppunit-1.14-0 libcppunit-dev libcppunit-doc

ncursesbin cpufrequtils python-numpy python-numpy-doc python-numpy-dbg

pythonscipy python-docutils qt4-bin-dbg qt4-default qt4-doc libqt4-dev

libqt4devbin python-qt4 python-qt4-dbg python-qt4-dev python-qt4-doc python-

qt4doc libqwt6abi1 libfftw3-bin libfftw3-dev libfftw3-doc ncurses-bin libncurses5

libncurses5-dev libncurses5-dbg libfontconfig1-dev libxrender-dev libpulse-dev

swig g++ automake autoconf libtool python-dev libfftw3-dev libcppunit-dev

libboost-all-dev libusb-dev libusb-1.0-0-dev fort77 libsdl1.2-dev python-wxgtk3.0 git

libqt4-dev python-numpy ccache python-opengl libgsl-dev python-cheetah

python-mako python-lxml doxygen qt4-default qt4-dev-tools libusb-1.0-0-dev

libqwtplot3d-qt5-dev pyqt4-dev-tools python-qwt5-qt4 cmake git wget libxi-dev

gtk2-engines-pixbuf r-base-dev python-tk liborc-0.4-0 liborc-0.4-dev

libasound2dev python-gtk2 libzmq3-dev libzmq5 python-requests python-sphinx

libcomedidev python-zmq libqwt-dev libqwt6abi1 python-six libgps-dev libgps23

gpsd gpsdclients python-gps python-setuptools

########### In home directory ##############

git clone https://github.com/EttusResearch/uhd

cd uhd git checkout v3.15.0.0 cd host mkdir build

cd build cmake ../ make make test sudo make

install sudo ldconfig

srsRAN Installation

Reference:

https://docs.srslte.com/en/latest/general/source/1_installation.html#packageinstal

lation

sudo apt-get install build-essential cmake libfftw3-dev libmbedtls-dev

libboostprogram-options-dev libconfig++-dev libsctp-dev

#####In home directory######

git clone https://github.com/srsRAN/srsRAN.git cd

srsRAN mkdir build cd build cmake ../ make make

test sudo make install sudo srsran_install_configs.sh

user

After installation, use “sudo srsEPC” and then “sudo srsENB” on the desktop that has

srsENB and srsEPC. Then use “sudo srsUE” on the UE desktop. This start the UE and

ENB connection.

Use “iperf -c –il –u" on the ENB desktop and “iperf -c ipaddress_UEdesktop –i1 –t60 –

u –b 1000M” on the UE desktop to see connection strength between UE and ENB.

2. Other Considerations

After summer break we came back to our code base which had undergone a

complete overhaul. So much so that the name was changed from srsLTE to srsRAN.

With this overhaul we ran into many problems. The first being had to relearn an

entirely new code base. This put us back about a month and a half in our project

due to the lack of documentation and resources provided by srsRAN. While our

advisor was very knowledgeable about 5g wireless systems, he does not have any

firsthand knowledge of the code base we are using. This made it so that we had no

place to go look for answers on how the code base functioned. We also struggled

greatly with the small size of our group. While most teams are made up of 6

students, we have only 4. This meant that we had to have a single person perform

tasks that were meant for two people on multiple occasions just to try and keep up

with our project timeline. This of course was at times not possible with our

schedules and ended up putting us back further on our project timeline. With all

these setbacks we were unable to complete our original project goal, however, since

this is a recurring project, we have built resources for future groups so that they do

not run into the same problems we did.

3. srsRAN Source code

https://github.com/srsran/srsRAN

https://github.com/srsran/srsRAN
https://github.com/srsran/srsRAN
https://github.com/srsran/srsRAN
https://github.com/srsran/srsRAN
https://github.com/srsran/srsRAN

